

 Navigation

 	
 index

 	
 next |

 	PPI Framework 2 1 documentation

PPI Framework

PPI is a framework delivery engine. Using the concept of microservices, it lets you choose which parts of frameworks you wish to use on a per-feature basis. As such each feature makes its own independent decisions, allowing you to pick the best tools from the best PHP frameworks

PPI bootstraps framework components for you from the top frameworks such as ZendFramework2 [http://framework.zend.com/], Symfony2 [http://symfony.com/], Laravel4 [http://laravel.com/], Doctrine2 [http://www.doctrine-project.org/]

In 7 short chapters (or less!) learn how to use PPI2 for your web projects.

	Installation

	Skeleton Application

	Modules

	Services

	Routing

	Controllers

	Templating

	Databases

Configuration Reference

	Framework

	Monolog

 Copyright 2011-2015, PPI Framework Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PPI Framework 2 1 documentation

Installation

Download from composer

Download the latest version of 2.1, in the current directory

composer create-project -sdev --no-interaction ppi/skeleton-app /var/www/skeleton "^2.1"

Downloading from the website

http://www.ppi.io/downloads

Automatic Vagrant Installation

The recommended install procedure is to use the pre-built vagrant image that ships with the skeleton app in the ansible directory.

Installing vagrant and ansible

Before you can run vagrant you’ll need to install a few system dependencies.

Install vagrant https://docs.vagrantup.com/v2/installation/

Install ansible: http://docs.ansible.com/ansible/intro_installation.html#latest-releases-via-pip

Running vagrant

Running the vagrant image - it’s that easy!

vagrant up

Accessing the application

If you wish to use the skeletonapp as a hostname, run this command and browse to http://skeletonapp.ppi

sudo sh -c 'echo "192.168.33.99 skeletonapp.ppi" >> /etc/hosts'

Otherwise you can browse straight to the ip address of: http://192.168.33.99

Manual Web Server Configuration

Security is crucial to consider. As a result all your app code and configuration is kept hidden away outside of /public/
and is inaccessible via the browser. Therefore we need to create a virtual host in order to route all web requests
to the /public/ folder and from there your public assets (css/js/images) are loaded normally. The .htaccess or web server’s rewrite rules kick in which route all non-asset files to /public/index.php.

Apache Configuration

We are now creating an Apache virtual host for the application to make http://skeletonapp.ppi serve
index.php from the skeletonapp/public directory.

<VirtualHost *:80>
 ServerName skeletonapp.ppi
 DocumentRoot "/var/www/skeleton/public"
 SetEnv PPI_ENV dev
 SetEnv PPI_DEBUG true

 <Directory "/var/www/skeleton/public">
 AllowOverride All
 Allow from all
 DirectoryIndex index.php
 Options Indexes FollowSymLinks

 RewriteEngine On
 RewriteCond %{REQUEST_FILENAME} !-d
 RewriteCond %{REQUEST_FILENAME} !-f
 RewriteRule ^ index.php [L]

 </Directory>
</VirtualHost>

Nginx Virtual Host

server {
 listen 80;
 server_name skeletonapp.ppi;
 root /var/www/skeleton/public;
 index index.php;

 location / {
 try_files $uri /index.php$is_args$args;
 }

 location ~ \.php$ {
 fastcgi_pass 127.0.0.1:9000;
 include fastcgi_params;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
 fastcgi_param HTTPS off;
 }
}

Restart your web server. The skeletonapp website can now be accessed using http://skeletonapp.ppi

Requirements

To easily check if your system passes all requirements, PPI provides two ways and we recommend you do both.

Why do we have both scripts? Because your CLI environment can have a separate php.ini file from your web environment so this will ensure you’re good to go from both sides.

Requirements checking on the command-line

$./app/check
 _
 _____ _____ |_|
 / __ | / __ | / |
 | |__| || |__| || |
 | ___/ | ___/ | |
 | | | | |_|
 |/ |/

 Framework Version 2

 -- Requirements Check --

* Configuration file used by PHP: /etc/php/cli-php5.4/php.ini
* Mandatory requirements **

OK PHP version must be at least 5.3.3 (5.4.13--pl0-gentoo installed)
OK PHP version must not be 5.3.16 as PPI won't work properly with it
OK Vendor libraries must be installed
OK app/cache/ directory must be writable
OK app/logs/ directory must be writable
OK date.timezone setting must be set
OK Configured default timezone "Europe/Lisbon" must be supported by your installation of PHP
OK json_encode() must be available
OK session_start() must be available
OK ctype_alpha() must be available
OK token_get_all() must be available
OK simplexml_import_dom() must be available
OK detect_unicode must be disabled in php.ini
OK xdebug.show_exception_trace must be disabled in php.ini
OK xdebug.scream must be disabled in php.ini
OK PCRE extension must be available

Watch out for the green OK markers. If they all light up, congratulations, you’re good to go!

Below is the list of required and optional requirements.

Requirements checking in the browser

The check.php script is accessible in your browser at: http://skeletonapp.ppi/check.php

Must have requirements

	PHP needs to be a minimum version of PHP 5.3.3

	JSON needs to be enabled

	ctype needs to be enabled

	Your PHP.ini needs to have the date.timezone setting

Optional requirements

	You need to have the PHP-XML module installed

	You need to have at least version 2.6.21 of libxml

	PHP tokenizer needs to be enabled

	mbstring functions need to be enabled

	iconv needs to be enabled

	POSIX needs to be enabled (only on *nix)

	Intl needs to be installed with ICU 4+

	APC 3.0.17+ (or another opcode cache needs to be installed)

	PHP.ini recommended settings
	short_open_tag = On

	magic_quotes_gpc = Off

	register_globals = Off

	session.autostart = Off

 Copyright 2011-2015, PPI Framework Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PPI Framework 2 1 documentation

Skeleton Application

The skeleton application is an app
for you to get up and running as quickly as possible. Inside you’ll find the PHP libraries (vendor dir), a selection of useful modules, our recommended directory structure and some default configuration.

First, lets review the file structure of the PPI skeleton application:

www/ # your web root directory
|
└── skeleton/ # the unpacked archive
 |
 ├── app/
 │ ├── console # CLI script to help debug the application
 │ ├── init.php
 │ ├── config/ # application configuration files
 │ │ ├── base/ # base configuration to be extended by other environments
 │ │ │ ├── app.yml
 │ │ ├── dev/ # configuration for the development environment (``dev``)
 │ │ │ └── app.yml
 │ │ ├── prod/ # configuration for the production environment (``prod``)
 │ │ │ └── app.yml
 │ ├── cache/ # application cache (must be writable by the web server)
 │ ├── logs/ # application logs (must be writable by the web server)
 │ └── views/ # global template (view) files
 │ └── base.html.php
 │
 ├── modules/ # application modules
 │ ├── Application/
 │ ├── Framework/
 │ └── UserModule/
 │
 ├── public/
 │ ├── index.php # front controller
 │ ├── css/
 │ ├── images/
 │ └── js/
 │
 └── vendor/ # libraries installed by Composer

Lets break it down into parts:

The public folder

The structure above shows you the /public/ folder. Anything outside of /public/ i.e: all your business code will be secure from direct URL access. In your development environment you don’t need a virtualhost file, you can directly access your application like so: http://localhost/skeleton/public/. In your production environment this will be http://www.mysite.com/. All your publicly available asset files should be here, CSS, JS, Images.

The public index.php file

The /public/index.php is also known as your bootstrap file, or front controller and is presented below:

<?php

// All relative paths start from the main directory, not from /public/
chdir(dirname(__DIR__));

// Setup autoloading and include PPI
require_once 'app/init.php';

// Set the environment
$env = getenv('PPI_ENV') ?: 'dev';
$debug = getenv('PPI_DEBUG') !== '0' && $env !== 'prod';

// Create our PPI App instance
$app = new PPI\App(array(
 'environment' => $env,
 'debug' => $debug
));

// Configure the application
$app->loadConfig($app->getEnvironment().'/app.php');

// Load the application, match the URL and send an HTTP response
$app->boot()->dispatch()->send();

Environments

PPI supports the notion of “environments” to make the application behave differently from when you are coding and
testing the application in your laptop to when you deploy it to a production server. While in production debug
messages won’t be logged, your application won’t stop due to non-fatal PHP errors and we’ll use caching wherever
possible. In development you’ll get everything!

Auto-set the environment using web server variables

Editing index.php whenever you want to test the application in another environment can be tedious.
An alternative is to set environment variables in your web server on a per vhost basis.

If you’re using Apache, environment variables can be set using the SetEnv [http://httpd.apache.org/docs/current/env.html] directive.

Production VirtualHost configuration:

<VirtualHost *:80>
 ServerName prod.skeletonapp.ppi.localhost
 DocumentRoot "/var/www/skeleton/public"
 SetEnv PPI_ENV prod
 SetEnv PPI_DEBUG false
 ...

And a development VirtualHost configuration:

<VirtualHost *:80>
 ServerName dev.skeletonapp.ppi.localhost
 DocumentRoot "/var/www/skeleton/public"
 SetEnv PPI_ENV dev
 SetEnv PPI_DEBUG true
 ...

The front controller (index.php) needs to be slightly edited to load these environment variables:

// file: public/index.php

// Set the environment
$env = getenv('PPI_ENV') ?: 'dev';
$debug = getenv('PPI_DEBUG') !== '0' && $env !== 'prod';

// Create our PPI App instance
$app = new PPI\App(array(
 'environment' => $env,
 'debug' => $debug
));

After this change http://prod.skeletonapp.ppi.localhost/ will use production settings while
http://dev.skeletonapp.ppi.localhost/ is configured to work in development mode.

Creating a new environment

You don’t need to be restricted to the dev and prod environments. To create a new environment with a special
configuration, let’s call it staging, just copy the folder contents of an existing environment to the new one
and edit the app.yml file inside the staging dir.

$ cd /path/to/skeletonapp/app/config
$ cp -r prod staging
$ vim staging/app.yml

Now make sure public/index.php is picking up your new environment:

<?php
// ...

// Staging
$app = new PPI\App(array(
 'environment' => 'staging',
 'debug' => true
));

$app->loadConfig($app->getEnvironment().'/app.yml');

// ...

Note

PPI creates cache and log files associated with each environment. For this new staging environment cache files
will be available under app/cache/staging/ and the log file is available at app/logs/staging.log.

The app folder

This is where all your apps global items go such as app config, datasource config and modules config and global
templates (views). You wont need to touch these out-of-the-box but it allows for greater flexibility in the future if
you need it.

The app/config folder

Starting with version 2.1 all the application configuration lives inside app/config/<env>/ folders. Each <env>
folder holds configuration for a specific environment: dev, prod.

Supported configuration formats

PPI supports both PHP and YAML [http://yaml.org/] formats. PHP is more powerful whereas YAML is more clean and readable.
It is up to you to pick the format of your liking.

Note

In 2.1 we changed the default configuration file format from PHP to YAML because (we think) it is less verbose and
faster to type but don’t worry because PHP configuration files are and will always be supported.

YAML imports/include

The YAML language doesn’t natively provide the capability to include other YAML files like a PHP include or require statement.
To overcome this limitation PPI supports two special syntaxes: imports and @include.

Note

One of the goals of the PPI Framework is to provide an environment familiar to users coming from or going to the
Symfony and Zend frameworks (among others). We support these two variants so these users do not need to worry about
learning new syntaxes.

imports:

Available in the Symfony framework [http://symfony.com/doc/current/book/page_creation.html#environment-configuration]. Works like a PHP include statement providing base configuration to be tweaked in
the current file. It is usually added at the top of the file.

imports:
 - { resource: ../base/app.yml }

@include:

Available in the Zend framework [http://framework.zend.com/manual/2.2/en/modules/zend.config.reader.html#zend-config-reader-yaml]. Similar to the imports syntax but can be used also in a subelement of a value.

framework:
 @include: ../base/datasource.yml

The app.yml file

Looking at the example config file below, you can control things here such as the enabled templating engines, the datasource connection and the logger (monolog).

	YAMLimports:
 - { resource: datasource.yml }
 - { resource: modules.yml }

framework:
 templating:
 engines: ["php", "smarty", "twig"]
 skeleton_module:
 path: "./utils/skeleton_module"

monolog:
 handlers:
 main:
 type: stream
 path: %app.logs_dir%/%app.environment%.log
 level: debug

	PHP<?php
$config = array();

$config['framework'] = array(
 'templating' => array(
 'engines' => array('php', 'smarty', 'twig'),
),
 'skeleton_module' => array(
 'path' => './utils/skeleton_module'
)
);

$config['datasource'] => array(
 'connections' = require __DIR__ . '/datasource.php'
);

$config['modules'] = require __DIR__ . 'modules.php';

return $config;

Tip

The configuration shown above is not exhaustive. For a complete listing of the available configuration options please check the sections in the Configuration Reference chapter.

The datasource.yml file

The datasource.yml is where you setup your database connection information.

Warning

Because this file may hold sensitive information consider not adding it to your source control system.

	YAMLdatasource:
 connections:
 main:
 type: 'pdo_mysql'
 host: 'localhost'
 dbname: 'ppi2_skeleton'
 user: 'root'
 pass: 'secret'

	PHP<?php
return array(
 'main' => array(
 'type' => 'pdo_mysql', // This can be any pdo driver. i.e: pdo_sqlite
 'host' => 'localhost',
 'dbname' => 'ppi2_skeleton',
 'user' => 'root',
 'pass' => 'secret'
)
);

The modules.yml file

The example below shows that you can control which modules are active and a list of directories module_paths that PPI will scan for your modules. Pay close attention to the order in which your modules are loaded. If one of your modules relies on resources loaded by another module. Make sure the module loading the resources is loaded before the others that depend upon it.

	YAMLmodules:
 active_modules:
 - Framework
 - Application
 - UserModule

 module_listener_options:
 module_paths: ['./modules', './vendor']

	PHP<?php
return array(
 'active_modules' => array(
 'Framework',
 'Application',
 'UserModule',
),
 'module_listener_options' => array(
 'module_paths' => array('./modules', './vendor')
),
);

The app/views folder

This folder is your applications global views folder. A global view is one that a multitude of other module views extend from. A good example of this is your website’s template file. The following is an example of /app/views/base.html.php:

<html>
 <body>
 <h1>My website</h1>
 <div class="content">
 <?php $view['slots']->output('_content'); ?>
 </div>
 </body>
</html>

You’ll notice later on in the Templating section to reference and extend a global template file, you will use the following syntax in your modules template.

<?php $view->extend('::base.html.php'); ?>

Now everything from your module template will be applied into your base.html.php files _content section demonstrated above.

The modules folder

This is where we get stuck into the real details, we’re going into the /modules/ folder. Click the next section to proceed.

 Copyright 2011-2015, PPI Framework Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PPI Framework 2 1 documentation

Modules

By default, one module is provided with the SkeletonApp, named Application. It provides a simple route pointing to the homepage. A simple controller to handle the “home” page of the application. This demonstrates using routes, controllers and views within your module.

Module Structure

Your module starts with Module.php. You can have configuration on your module. Your can have routes which result in controllers getting dispatched. Your controllers can render view templates.

├── Module.php
├── resources
│ ├── config
│ │ └── config.yml
│ ├── routes
│ │ ├── laravel.php
│ │ └── symfony.yml
│ └── views
│ └── index
│ └── index.html.php
├── src
│ ├── Controller
│ │ ├── Index.php
│ │ └── Shared.php

The Module.php class

Every PPI module looks for a Module.php class file, this is the starting point for your module.

<?php
namespace Application;
use PPI\Framework\Module\AbstractModule;

class Module extends AbstractModule
{
}

Autoloading

Registering your namespace can be done using the Zend Framework approach below. You can also skip this and register your module’s namespace to your composer.json file

<?php
namespace Application;
use PPI\Framework\Module\AbstractModule;

class Module extends AbstractModule
{
 public function getAutoloaderConfig()
 {
 return array(
 'Zend\Loader\StandardAutoloader' => array(
 'namespaces' => array(
 __NAMESPACE__ => __DIR__ . '/src/',
),
),
);
 }
}

Init

The above code shows you the Module class, and the all important init() method. Why is it important? If you remember from The Skeleton Application section previously, we have defined in our modules.config.php config file an activeModules option, when PPI is booting up the modules defined activeModules it looks for each module’s init() method and calls it.

The init() method is run for every page request, and should not perform anything heavy. It is considered bad practice to utilize these methods for setting up or configuring instances of application resources such as a database connection, application logger, or mailer.

<?php
namespace Application;
use PPI\Framework\Module\AbstractModule;

class Module extends AbstractModule
{
 public function init()
 {
 }
}

Configuration

Expanding on from the previous code example, we’re now adding a getConfig() method. This must return a raw PHP array. You may require/include a PHP file directly or use the loadConfig() helper that works for both PHP and YAML files. When using loadConfig() you don’t need to tell the full path, just the filename.

All the modules with getConfig() defined on them will be merged together to create ‘modules config’ and this is merged with your global app’s configuration file at /app/app.config.php. Now from any controller you can get access to this config by doing $this->getConfig(). More examples on this later in the Controllers section.

<?php
class Module extends AbstractModule
{
 /**
 * Returns configuration to merge with application configuration.
 *
 * @return array
 */
 public function getConfig()
 {
 return $this->loadConfig(__DIR__ . '/resources/config/config.yml');
 }
}

Tip

To help you troubleshoot the configuration loaded by the framework you may use the app/console config:dump command

Conclusion

Lets move onto Services and Routing for our modules on the next pages.

 Copyright 2011-2015, PPI Framework Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PPI Framework 2 1 documentation

Services

Each of your features (modules) wants to be self-contained, isolated and in control of its own destiny. To keep such separation is a good thing (Separation of Responsibility principal). Once you’ve got that nailed then you want to begin exposing information out of your module. A popular architectural pattern is Service Oriented Architecture (SOA).

Services in PPI have names that you define. This can be something simple like user.search or cache.driver or it’s even somewhat popular to use the Fully Qualified Class Name (FQCN) as the name of the service like this: MyService::class. With that in mind it’s just a string and it’s up to you what convention you use just make sure it’s consistent.

Defining the Service in our Module

This is of course optional for your module but if you want to begin doing services then the method is getServiceConfig.
This will be called on all modules upon boot() of PPI. Boot should be almost instantaneous and non-blocking, so be sure not to do anything expensive here such as make network connections, as that’ll slow down your boot process.

<?php
namespace MyModule;

use PPI\Framework\Module\AbstractModule;
use MyModule\Factory\UserSearchFactory;
use MyModule\Factory\UserCreateFactory;
use MyModule\Factory\UserImportService;

class Module extends AbstractModule
{

 public function getServiceConfig()
 {
 return ['factories' => [
 'user.search' => UserSearchFactory::class,
 'user.create' => UserCreateFactory::class,
 'user.import' => function ($sm) {
 return new UserImportService($sm->get('Doctrine\ORM\EntityManager'));
 }
]];
 }
}

Above you’ll see two types of ways to create a service. One is a Factory class and one is an inline factory closure. It’s recommended to use a Factory class but each to their own.

Creating a Service Factory

<?php
namespace MyModule\Factory;

use Zend\ServiceManager\ServiceLocatorInterface;
use Zend\ServiceManager\FactoryInterface;
use MyModule\Service\UserSearchService;

class UserSearchFactory implements FactoryInterface
{
 public function createService(ServiceLocatorInterface $sm)
 {
 $config = $sm->get('config');
 if(!isset($config['usersearch']['search_key']) {
 throw new \RuntimeException('Missing user search configuration');
 }

 return new UserSearchService(
 $config['usersearch']['search_key'],
 $sm->get('Doctrine\ORM\EntityManager')
);
 }

}

Using services in our Controllers

To use the services in our Controllers, we just need to call $this->getService('service.name')

<?php
public function searchUsersAction(Request $request, $lat, $long)
{
 $userSearchService = $this->getService('user.search');
 $users = $userSearchService->getUsersFromLatLong($lat, $long);

 return $this->render('MyModule:search:searchUsers.twig', compact('users'));
}

 Copyright 2011-2015, PPI Framework Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PPI Framework 2 1 documentation

Routing

Routes are the rules that tell the framework what URLs map to what actions of your application.

When PPI is booting up it will take call `getRoutes()` on each module and register its entry within the main `ChainRouter`, which is a router stack.
PPI will call `match` on each router in the order that your modules have been defined in your application config.

PPI provides bindings for popular PHP routers which you will see examples of below. Review the documentation for each router to learn more about using them.

Using Symfony Router

<?php
// Module.php
class Module extends AbstractModule
{
 //
 public function getRoutes()
 {
 return $this->loadSymfonyRoutes(__DIR__ . '/routes/symfonyroutes.yml');
 }
}

resources/config/symfonyroutes.yml
BlogModule_Index:
 pattern: /blog
 defaults: { _controller: "BlogModule:Blog:index"}

Using Aura Router

<?php
// Module.php
class Module extends AbstractModule
{
 //
 public function getRoutes()
 {
 return $this->loadAuraRoutes(__DIR__ . '/resources/config/auraroutes.php');
 }
}

<?php
// resources/config/auraroutes.php
$router
 ->add('BlogModule_Index', '/blog')
 ->addValues(array(
 'controller' => 'BlogModule\Controller\Index',
 'action' => 'indexAction'
));

// add a named route using symfony controller name syntax
$router->add('BlogModule_View', '/blog/view/{id}')
 ->addTokens(array(
 'id' => '\d+'
))
 ->addValues(array(
 'controller' => 'BlogModule:Index:view'
));

return $router;

Using FastRoute Router

<?php
// Module.php
class Module extends AbstractModule
{
 public function getRoutes()
 {
 return $this->loadFastRouteRoutes(__DIR__ . '/resources/routes/fastroutes.php');
 }
}

<?php
// resources/config/fastroutes.php
/**
 * @var \FastRoute\RouteCollector $r
 */
$r->addRoute('GET', '/blog', 'BlogModule\Controller\Index');

 Copyright 2011-2015, PPI Framework Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PPI Framework 2 1 documentation

Controllers

So what is a controller? A controller is just a PHP class, like any other that you’ve created before, but the intention of it, is to have a bunch of methods on it called actions. The idea is: each route in your system will execute an action method. Examples of action methods would be your homepage or blog post page. The job of a controller is to perform a bunch of code and respond with some HTTP content to be sent back to the browser. The response could be a HTML page, a JSON array, XML document or to redirect somewhere. Controllers in PPI are ideal for making anything from web services, to web applications, to just simple html-driven websites.

Lets quote something we said in the last chapter’s introduction section

Defaults

This is the important part, The syntax is Module:Controller:action. So if you specify Application:Blog:show then this will execute the following class path: /modules/Application/Controller/Blog->showAction(). Notice how the method has a suffix of Action, this is so you can have lots of methods on your controller but only the ones ending in Action() will be executable from a route.

Example controller

Review the following route that we’ll be matching.

Blog_Show:
 pattern: /blog/{blogId}
 defaults: { _controller: "Application:Blog:show"}

So lets presume the route is /blog/show/{blogId}, and look at what your controller would look like. Here is an example blog controller, based on some of the routes provided above.

<?php
namespace Application\Controller;

use Application\Controller\Shared as BaseController;

class Blog extends BaseController
{

 public function showAction(Request $request, $blogId)
 {
 $bs = $this->getBlogStorage();

 if(!$bs->existsByID($blogId)) {
 $this->setFlash('error', 'Invalid Blog ID');
 return $this->redirectToRoute('Blog_Index');
 }

 // Get the blog post for this ID
 $blogPost = $bs->getByID($blogId);

 // Render our main blog page, passing in our $blogPost article to be rendered
 $this->render('Application:blog:show.html.php', compact('blogPost'));
 }

}

Generating urls using routes

Here we are still executing the same route, but making up some urls using route names

<?php
namespace Application\Controller;

use Application\Controller\Shared as BaseController;

class Blog extends BaseController
{
 public function showAction(Request $request, $blogId)
 {

 // pattern: /about
 $aboutUrl = $this->generateUrl('About_Page');

 // pattern: /blog/show/{blogId}
 $blogPostUrl = $this->generateUrl('Blog_Post', array('id' => $blogId);

 }
}

Redirecting to routes

An extremely handy way to send your users around your application is redirect them to a specific route.

<?php
namespace Application\Controller;

use Application\Controller\Shared as BaseController;

class Blog extends BaseController
{
 public function showAction(Request $request, $blogId)
 {

 // Send user to /login, if they are not logged in
 if(!$this->isLoggedIn()) {
 return $this->redirectToRoute('User_Login');
 }

 // go to /user/profile/{username}
 return $this->redirectToRoute('User_Profile', array('username' => 'ppi_user'));

 }
}

Working with POST values

<?php
namespace Application\Controller;

use Application\Controller\Shared as BaseController;

class Blog extends BaseController
{

 public function postAction()
 {

 $this->getPost()->set('myKey', 'myValue');

 var_dump($this->getPost()->get('myKey')); // string('myValue')

 var_dump($this->getPost()->has('myKey')); // bool(true)

 var_dump($this->getPost()->remove('myKey'));
 var_dump($this->getPost()->has('myKey')); // bool(false)

 // To get all the post values
 $postValues = $this->post();

 }
}

Working with QueryString parameters

<?php
namespace Application\Controller;

use Application\Controller\Shared as BaseController;

class Blog extends BaseController
{
 // The URL is /blog/?action=show&id=453221
 public function queryStringAction()
 {

 var_dump($this->getQueryString()->get('action')); // string('show')
 var_dump($this->getQueryString()->has('id')); // bool(true)

 // Get all the query string values
 $allValues = $this->queryString();

 }
}

Working with server variables

<?php
namespace Application\Controller;

use Application\Controller\Shared as BaseController;

class Blog extends BaseController
{
 public function serverAction()
 {

 $this->getServer()->set('myKey', 'myValue');

 var_dump($this->getServer()->get('myKey')); // string('myValue')

 var_dump($this->getServer()->has('myKey')); // bool(true)

 var_dump($this->getServer()->remove('myKey'));
 var_dump($this->getServer()->has('myKey')); // bool(false)

 // Get all server values
 $allServerValues = $this->server();

 }
}

Working with cookies

<?php
namespace Application\Controller;

use Application\Controller\Shared as BaseController;

class Blog extends BaseController
{

 public function cookieAction()
 {

 $this->getCookie()->set('myKey', 'myValue');

 var_dump($this->getCookie()->get('myKey')); // string('myValue')

 var_dump($this->getCookie()->has('myKey')); // bool(true)

 var_dump($this->getCookie()->remove('myKey'));
 var_dump($this->getCookie()->has('myKey')); // bool(false)

 // Get all the cookies
 $cookies = $this->cookies();

 }
}

Working with session values

<?php
namespace Application\Controller;

use Application\Controller\Shared as BaseController;

class Blog extends BaseController
{
 public function sessionAction()
 {
 $this->getSession()->set('myKey', 'myValue');

 var_dump($this->getSession()->get('myKey')); // string('myValue')
 var_dump($this->getSession()->has('myKey')); // bool(true)
 var_dump($this->getSession()->remove('myKey'));
 var_dump($this->getSession()->has('myKey')); // bool(false)

 // Get all the session values
 $allSessionValues = $this->session();

 }
}

Working with the config

Using the getConfig() method we can obtain the config array. This config array is the result of ALL the configs returned from all the modules, merged with your application’s global config.

<?php
namespace Application\Controller;

use Application\Controller\Shared as BaseController;

class Blog extends BaseController
{
 public function configAction()
 {
 $config = $this->getConfig();

 switch($config['mailer']) {

 case 'swift':
 break;

 case 'sendgrid':
 break;

 case 'mailchimp':
 break;

 }
 }
}

Working with the is() method

The is() method is a very expressive way of coding and has a variety of options you can send to it. The method always returns a boolean as you are saying “is this the case?”

<?php
namespace Application\Controller;

use Application\Controller\Shared as BaseController;

class Blog extends BaseController
{
 public function isAction()
 {
 if($this->is('ajax')) {}
 if($this->is('post') {}
 if($this->is('patch') {}
 if($this->is('put') {}
 if($this->is('delete') {}

 // ssl, https, secure: are all the same thing
 if($this->is('ssl') {}
 if($this->is('https') {}
 if($this->is('secure') {}

 }
}

Getting the users IP or UserAgent

Getting the user’s IP address or user agent is very trivial.

<?php
namespace Application\Controller;

use Application\Controller\Shared as BaseController;

class Blog extends BaseController
{
 public function userAction()
 {
 $userIP = $this->getIP();
 $userAgent = $this->getUserAgent();
 }
}

Working with flash messages

A flash message is a notification that the user will see on the next page that is rendered. It’s basically a setting stored in the session so when the user hits the next designated page it will display the message, and then disappear from the session. Flash messages in PPI have different types. These types can be 'error', 'warning', 'success', this will determine the color or styling applied to it. For a success message you’ll see a positive green message and for an error you’ll see a negative red message.

Review the following action, it is used to delete a blog item and you’ll see a different flash message depending on the scenario.

<?php
namespace Application\Controller;

use Application\Controller\Shared as BaseController;

class Blog extends BaseController
{
 public function deleteAction()
 {
 $blogID = $this->getPost()->get('blogID');

 if(empty($blogID)) {
 $this->setFlash('error', 'Invalid BlogID Specified');
 return $this->redirectToRoute('Blog_Index');
 }

 $bs = $this->getBlogStorage();

 if(!$bs->existsByID($blogID)) {
 $this->setFlash('error', 'This blog ID does not exist');
 return $this->redirectToRoute('Blog_Index');
 }

 $bs->deleteByID($blogID);
 $this->setFlash('success', 'Your blog post has been deleted');
 return $this->redirectToRoute('Blog_Index');
 }
}

Getting the current environment

You may want to perform different scenarios based on the site’s environment. This is a configuration value defined in your global application config. The getEnv() method is how it’s obtained.

<?php
namespace Application\Controller;

use Application\Controller\Shared as BaseController;

class Blog extends BaseController
{
 public function envAction()
 {

 $env = $this->getEnv();
 switch($env) {
 case 'development':
 break;

 case 'staging':
 break;

 case 'production':
 default:
 break;

 }
 }
}

 Copyright 2011-2015, PPI Framework Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PPI Framework 2 1 documentation

Templating

As discovered in the previous chapter, a controller’s job is to process each HTTP request that hits your web application. Once your controller has finished its processing it usually wants to generate some output content. To achieve this it hands over responsibility to the templating engine. The templating engine will load up the template file you tell it to, and then generate the output you want, his can be in the form of a redirect, HTML webpage output, XML, CSV, JSON; you get the picture!

In this chapter you’ll learn:

	How to create a base template

	How to load templates from your controller

	How to pass data into templates

	How to extend a parent template

	How to use template helpers

Base Templates

What are base templates?

Why do we need base templates? well you don’t want to have to repeat HTML over and over again and perform repetitive steps for every different type of page you have. There’s usually some commonalities between the templates and this commonality is your base template. The part that’s usually different is the content page of your webpage, such as a users profile or a blog post.

So lets see an example of what we call a base template, or somethings referred to as a master template. This is all the HTML structure of your webpage including headers and footers, and the part that’ll change will be everything inside the page-content section.

Where are they stored?

Base templates are stored in the ./app/views/ directory. You can have as many base templates as you like in there.

This file is ./app/views/base.html.php

Example base template:

<!DOCTYPE html>
<html>
 <head>
 <title>Welcome to Symfony!</title>
 </head>
 <body>
 <div id="header">...</div>
 <div id="page-content">
 <?php $view['slots']->output('_content'); ?>
 </div>
 <div id="footer">...</div>
 </body>
</html>

Lets recap a little, you see that slots helper outputting something called _content? Well this is actually injecting the resulting output of the CHILD template belonging to this base template. Yes that means we have child templates that extend parent/base templates. This is where things get interesting! Keep on reading.

Extending Base Templates

On our first line we extend the base template we want. You can extend literally any template you like by specifying its Module:folder:file.format.engine naming syntax. If you miss out the Module and folder sections, such as ::base.html.php then it’s going to take the global route of ./app/views/.

<?php $view->extend('::base.html.php'); ?>
<div class="user-registration-page">
 <h1>Register for our site</h1>
 <form>...</form>
</div>

The resulting output

If you remember that the extend call is really just populating a slots section named _content then the injected content into the parent template looks like this.

<!DOCTYPE html>
<html>
 <head>
 <title>Welcome to Symfony!</title>
 </head>
 <body>
 <div id="header">...</div>
 <div id="page-content">

 <div class="user-registration-page">
 <h1>Register for our site</h1>
 <form>...</form>
 </div>

 </div>
 <div id="footer">...</div>
 </body>
</html>

Example scenario

Consider the following scenario. We have the route Blog_Show which executes the action Application:Blog:show. We then load up a template named Application:blog:show.html.php which is designed to show the user their blog post.

The route

Blog_Show:
 pattern: /blog/{id}
 defaults: { _controller: "Application:Blog:show"}

The controller

<?php
namespace Application\Controller;

use Application\Controller\Shared as BaseController;

class Blog extends BaseController {

 public function showAction() {

 $blogID = $this->getRouteParam('id');
 $bs = $this->getBlogStorage();

 if(!$bs->existsByID($blogID)) {
 $this->setFlash('error', 'Invalid Blog ID');
 return $this->redirectToRoute('Blog_Index');
 }

 // Get the blog post for this ID
 $blogPost = $bs->getByID($blogID);

 // Render our blog post page, passing in our $blogPost article to be rendered
 $this->render('Application:blog:show.html.php', compact('blogPost'));
 }
}

The template

So the name of the template loaded is Application:blog:show.html.php then this is going to translate to ./modules/Application/blog/show.html.php. We also passed in a $blogPost variable which can be used locally within the template that you’ll see below.

<?php $view->extend('::base.html.php'); ?>

<div class="blog-post-page">
 <h1><?=$blogPost->getTitle();?></h1>
 <p class="created-by"><?=$blogPost->getCreatedBy();?></p>
 <p class="content"><?=$blogPost->getContent();?></p>
</div>

Using the slots helper

We have a bunch of template helpers available to you, the helpers are stored in the $view variable, such as $view['slots'] or $view['assets']. So what is the purpose of using slots? Well they’re really for segmenting the templates up into named sections and this allows the child templates to specify content that the parent is going to inject for them.

Review this example it shows a few examples of using the slots helper for various different reasons.

The base template

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title><?php $view['slots']->output('title', 'PPI Skeleton Application') ?></title>
 </head>
 <body>
 <div id="page-content">
 <?php $view['slots']->output('_content') ?>
 </div>
 </body>
</html>

The child template

<?php $view->extend('::base.html.php'); ?>

<div class="blog-post-page">
 <h1><?=$blogPost->getTitle();?></h1>
 <p class="created-by"><?=$blogPost->getCreatedBy();?></p>
 <p class="content"><?=$blogPost->getContent();?></p>
</div>

<?php $view['slots']->start('title'); ?>
Welcome to the blog page
<?php $view['slots']->stop(); ?>

What’s going on?

The slots key we specified first was title and we gave the output method a second parameter, this means when the child template does not specify a slot section named title then it will default to “PPI Skeleton Application”.

Using the assets helper

So why do we need an assets helper? Well one main purpose for it is to include asset files from your project’s ./public/ folder such as images, css files, javascript files. This is useful because we’re never hard-coding any baseurl’s anywhere so it will work on any environment you host it on.

Review this example it shows a few examples of using the slots helper for various different reasons such as including CSS and JS files.

<?php $view->extend('::base.html.php'); ?>

<div class="blog-post-page">

 <h1><?=$blogPost->getTitle();?></h1>

 <img src="<?=$view['assets']->getUrl('images/blog.png');?>" alt="The Blog Image">

 <p class="created-by"><?=$blogPost->getCreatedBy();?></p>
 <p class="content"><?=$blogPost->getContent();?></p>

 <?php $view['slots']->start('include_js'); ?>
 <script type="text/javascript" src="<?=$view['assets']->getUrl('js/blog.js');?>"></script>
 <?php $view['slots']->stop(); ?>

 <?php $view['slots']->start('include_css'); ?>
 <link href="<?=$view['assets']->getUrl('css/blog.css');?>" rel="stylesheet">
 <?php $view['slots']->stop(); ?>

</div>

What’s going on?

By asking for images/blog.png we’re basically asking for www.mysite.com/images/blog.png, pretty straight forward right? Our include_css and include_js slots blocks are custom HTML that’s loading up CSS/JS files just for this particular page load. This is great because you can split your application up onto smaller CSS/JS files and only load the required assets for your particular page, rather than having to bundle all your CSS into the one file.

Using the router helper

What is a router helper? The router help is a nice PHP class with routing related methods on it that you can use while you’re building PHP templates for your application.

What’s it useful for? The most common use for this is to perform a technique commonly known as reverse routing. Basically this is the process of taking a route key and turning that into a URL, rather than the standard process of having a URL and that translate into a route to become dispatched.

Why is reverse routing needed? Lets take the Blog_Show route we made earlier in the routing section. The syntax of that URI would be like: /blog/show/{title}, so rather than having numerous HTML links all manually referring to /blog/show/my-title we always refer to its route key instead, that way if we ever want to change the URI to something like /blog/post/{title} the templating layer of your application won’t care because that change has been centrally maintained in your module’s routes file.

Here are some examples of reverse routing using the routes helper

<a href="<?=$view['router']->generate('About_Page');?>">About Page

<p>User List</p>

<?php foreach($users as $user): ?>
 <a href="<?=$view['router']->generate('User_Profile', array('id' => $user->getID())); ?>"><?=$view->escape($user->getName());?>
<?php endforeach; ?>

The output would be something like this

About Page

<p>User List</p>

 PPI User
 Another PPI User

 Copyright 2011-2015, PPI Framework Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PPI Framework 2 1 documentation

Databases

When you’re developing an app, it is 100% sure you’ll need to persist and read information to and from a database. Fortunately, PPI makes it simple to work with databases with our powerful DataSources component, which makes use of Doctrine DBAL layer, a library whose sole goal is to give you robust tools to make this easy. In this chapter, you’ll learn the basic philosophy behind doctrine and see how easy is to use the DataSource component to work with databases.

Note

We suggest to use our DataSource component which is a wrapper around the Doctrine DBAL component. This provides you with a simple yet very powerful database layer to talk to any PDO supported database engine. If you prefer to work with another database component then you can simply create that as a service and inject that into your storage classes instead of the ‘datasource’ component.

A Simple Example: A User

The easiest way to understand how the DataSource component works is to see it in action. In this section, you’ll configure your database, create a Product storage class, persist it to the database and fetch it back out.

Configuring the Database

Before you begin, you’ll need to configure your database connection information. By convention, this information is usually configured in the app/datasource.config.php file:

<?php

$connections = array();

$connections['main'] = array(
 'type' => 'pdo_mysql', // This can be any pdo driver. i.e: pdo_sqlite
 'host' => 'localhost',
 'dbname' => 'database',
 'user' => 'database_user',
 'pass' => 'database_password'
);

return $connections; // Very important you must return the connections variable from this script

Note

You can have multiple connections within your app. That means you may need to have multiple db engines, like MySQL, PGSQL, MSSQL, or any other PDO driver.

Creating the Storage Class

After configuring the database connection information, we need to have a storage class, which is the one that’s going to be talking to the DataSource component when there’s a need to persist information.

<?php
namespace UserModule\Storage;

use UserModule\Storage\Base as BaseStorage;
use UserModule\Entity\User as UserEntity;

// Note here, we extend from
// a BaseStorage class
class User extends BaseStorage
{

 protected $_meta = array(
 'conn' => 'main', // the connection.
 'table' => 'user',
 'primary' => 'id',
 'fetchMode' => \PDO::FETCH_ASSOC
);

 /**
 * Create a user record
 *
 * @param array $userData
 * @return mixed
 */
 public function create(array $userData)
 {
 return $this->insert($userData);
 }

 /**
 * Get a user entity by its ID
 *
 * @param $userID
 * @return mixed
 * @throws \Exception
 */
 public function getByID($userID)
 {
 $row = $this->find($userID);
 if ($row === false) {
 throw new \Exception('Unable to obtain user row for id: ' . $userID);
 }

 return new UserEntity($row);
 }

 /**
 * Delete a user by their ID
 *
 * @param integer $userID
 * @return mixed
 */
 public function deleteByID($userID)
 {
 return $this->delete(array($this->getPrimaryKey() => $userID));
 }

 /**
 * Count all the records
 *
 * @return mixed
 */
 public function countAll()
 {
 $row = $this->_conn->createQueryBuilder()
 ->select('count(id) as total')
 ->from($this->getTableName(), 'u')
 ->execute()
 ->fetch($this->getFetchMode());

 return $row['total'];
 }

 /**
 * Get entity objects from all users rows
 *
 * @return array
 */
 public function getAll()
 {
 $entities = array();
 $rows = $this->fetchAll();
 foreach ($rows as $row) {
 $entities[] = new UserEntity($row);
 }

 return $entities;
 }

}

First of all, we can see the class extends a BaseController class, which is a Shared Storage class, where we can place reusable code for all of our storage classes.

<?php

namespace UserModule\Storage;
use PPI\DataSource\ActiveQuery;
class Base extends ActiveQuery
{
 public function sharedFunction()
 {
 // code here...
 }
}

As you can see, the storage class is pretty explanatory by itself, you have a set of functions that perform specific tasks on the database; please note the use of the Doctrine DBAL Query Builder. Let’s see how it works:

public function getByUsername($username)
{

 $row = $this->createQueryBuilder()
 ->select('u.*')
 ->from($this->getTableName(), 'u')
 ->andWhere('u.username = :username')
 ->setParameter(':username', $username)
 ->execute()
 ->fetch($this->getFetchMode());

 if ($row === false) {
 throw new \Exception('Unable to find user record by username: ' . $username);
 }

 return new UserEntity($row);

}

Note

Doctrine 2.1 ships with a powerful query builder for the SQL language. This QueryBuilder object has methods to add parts to an SQL statement. If you built the complete state you can execute it using the connection it was generated from. The API is roughly the same as that of the DQL Query Builder. For more information please refer to http://docs.doctrine-project.org/projects/doctrine-dbal/en/latest/reference/query-builder.html

Entities

The previous function returns an object called UserEntity, you may be wondering, what is that, right? well, an Entity is just an object representing a record in a table. Now, let’s see how does an Entity class looks like:

<?php

namespace UserModule\Entity;

class User
{

 protected $_id = null;
 protected $_username = null;
 protected $_firstname = null;
 protected $_lastname = null;
 protected $_email = null;

 public function __construct(array $data)
 {
 foreach ($data as $key => $value) {
 if (property_exists($this, '_' . $key)) {
 $this->{'_' . $key} = $value;
 }
 }

 }

 public function getID()
 {
 return $this->_id;
 }

 public function getFirstName()
 {
 return $this->_firstname;
 }

 public function getLastName()
 {
 return $this->_lastname;
 }

 public function getFullName()
 {
 return $this->getFirstName() . ' ' . $this->getLastName();
 }

 public function getEmail()
 {
 return $this->_email;
 }

 public function setUsername($username)
 {
 $this->_username = $username;
 }

 public function getUsername()
 {
 return $this->_username;
 }

}

Fetching Data

We have covered so far the Storage and Entities classes, now let’s see how it actually works, for that, let’s put a sample code:

<?php
namespace UserModule\Controller;

use UserModule\Controller\Shared as SharedController;

class Profile extends SharedController
{

 public function viewAction()
 {

 // Get the username from the route params
 $username = $this->getRouteParam('username');

 // Instantiate the storage service
 $storage = $this->getService('user.storage');

 // Fetch the user by username
 // This returns a UserEntity Object
 $user = $storage->getByUsername($username);

 // Using the UserEntity Object is that simple:
 echo $user->getFullName(); // Returns the user's full name.
 }
}

Inserting Data

In the previous section we saw how to fetch information from the database, now, let’s see how to insert it.

<?php
namespace UserModule\Controller;

use UserModule\Controller\Shared as SharedController;

class Profile extends SharedController
{

 public function createAction()
 {

 // Assuming we're getting the info
 // from a submitted form through POST
 $post = $this->post();

 // Instantiate the storage service
 $storage = $this->getService('user.storage');

 // @todo You've got to add some codes here
 // To check for missing fields, or fields being empty.

 // Prepare user array for insertion
 $user = array(
 'email' => $post['userEmail'],
 'firstname' => $post['userFirstName'],
 'lastname' => $post['userLastName'],
 'username' => $post['userName']
);

 // Create the user
 $newUserID = $storage->create($user);

 // Successful registration. \o/
 $this->setFlash('success', 'User created');
 return $this->redirectToRoute('User_Thankyou_Page');

 }

}

 Copyright 2011-2015, PPI Framework Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PPI Framework 2 1 documentation

Configuration Reference

	Framework

	Monolog

 Copyright 2011-2015, PPI Framework Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PPI Framework 2 1 documentation

 	Configuration Reference

Framework Configuration (“framework”)

This reference document is a work in progress. It should be accurate, but
all options are not yet fully covered.

The core of the PPI Framework can be configured under the framework key in your application configuration.
This includes settings related to sessions, translation, routing and more.

Configuration

	
	session

	
	cookie_lifetime

	cookie_path

	cookie_domain

	cookie_secure

	cookie_httponly

	gc_divisor

	gc_probability

	gc_maxlifetime

	save_path

	
	templating

	
	assets_base_urls

	assets_version

	assets_version_format

session

cookie_lifetime

type: integer default: 0

This determines the lifetime of the session - in seconds. By default it will use
0, which means the cookie is valid for the length of the browser session.

cookie_path

type: string default: /

This determines the path to set in the session cookie. By default it will use /.

cookie_domain

type: string default: ''

This determines the domain to set in the session cookie. By default it’s blank,
meaning the host name of the server which generated the cookie according
to the cookie specification.

cookie_secure

type: Boolean default: false

This determines whether cookies should only be sent over secure connections.

cookie_httponly

type: Boolean default: false

This determines whether cookies should only accessible through the HTTP protocol.
This means that the cookie won’t be accessible by scripting languages, such
as JavaScript. This setting can effectively help to reduce identity theft
through XSS attacks.

gc_probability

New in version 2.1: The gc_probability option is new in version 2.1

type: integer default: 1

This defines the probability that the garbage collector (GC) process is started
on every session initialization. The probability is calculated by using
gc_probability / gc_divisor, e.g. 1/100 means there is a 1% chance
that the GC process will start on each request.

gc_divisor

New in version 2.1: The gc_divisor option is new in version 2.1

type: integer default: 100

See gc_probability.

gc_maxlifetime

New in version 2.1: The gc_maxlifetime option is new in version 2.1

type: integer default: 14400

This determines the number of seconds after which data will be seen as “garbage”
and potentially cleaned up. Garbage collection may occur during session start
and depends on gc_divisor and gc_probability.

save_path

type: string default: %app.cache.dir%/sessions

This determines the argument to be passed to the save handler. If you choose
the default file handler, this is the path where the files are created. You can
also set this value to the save_path of your php.ini by setting the
value to null:

	YAML# app/config/app.yml
framework:
 session:
 save_path: null

	PHP// app/config/app.php
return array(
'framework' => array(
 'session' => array(
 'save_path' => null,
),
));

templating

assets_base_urls

default: { http: [], ssl: [] }

This option allows you to define base URLs to be used for assets referenced
from http and ssl (https) pages. A string value may be provided in
lieu of a single-element array. If multiple base URLs are provided, PPI2
will select one from the collection each time it generates an asset’s path.

For your convenience, assets_base_urls can be set directly with a string or
array of strings, which will be automatically organized into collections of base
URLs for http and https requests. If a URL starts with https:// or
is protocol-relative [http://tools.ietf.org/html/rfc3986#section-4.2] (i.e. starts with //) it will be added to both
collections. URLs starting with http:// will only be added to the
http collection.

New in version 2.1: Unlike most configuration blocks, successive values for assets_base_urls
will overwrite each other instead of being merged. This behavior was chosen
because developers will typically define base URL’s for each environment.
Given that most projects tend to inherit configurations
(e.g. config_test.yml imports config_dev.yml) and/or share a common
base configuration (i.e. app.yml), merging could yield a set of base
URL’s for multiple environments.

assets_version

type: string

This option is used to bust the cache on assets by globally adding a query
parameter to all rendered asset paths (e.g. /images/logo.png?v2). This
applies only to assets rendered via the Twig asset function (or PHP equivalent)
as well as assets rendered with Assetic.

For example, suppose you have the following:

	Twig

	PHP<img src="<?php echo $view['assets']->getUrl('images/logo.png') ?>" alt="PPI!" />

By default, this will render a path to your image such as /images/logo.png.
Now, activate the assets_version option:

	YAML# app/config/app.yml
framework:
 # ...
 templating: { engines: ['twig'], assets_version: v2 }

	PHP// app/config/app.php
return array(
'framework' => array(
 ...,
 'templating' => array(
 'engines' => array('twig'),
 'assets_version' => 'v2',
),
));

Now, the same asset will be rendered as /images/logo.png?v2 If you use
this feature, you must manually increment the assets_version value
before each deployment so that the query parameters change.

You can also control how the query string works via the assets_version_format
option.

assets_version_format

type: string default: %%s?%%s

This specifies a sprintf pattern that will be used with the assets_version
option to construct an asset’s path. By default, the pattern adds the asset’s
version as a query string. For example, if assets_version_format is set to
%%s?version=%%s and assets_version is set to 5, the asset’s path
would be /images/logo.png?version=5.

Note

All percentage signs (%) in the format string must be doubled to escape
the character. Without escaping, values might inadvertently be interpreted
as a service parameter.

Tip

Some CDN’s do not support cache-busting via query strings, so injecting the
version into the actual file path is necessary. Thankfully, assets_version_format
is not limited to producing versioned query strings.

The pattern receives the asset’s original path and version as its first and
second parameters, respectively. Since the asset’s path is one parameter, you
cannot modify it in-place (e.g. /images/logo-v5.png); however, you can
prefix the asset’s path using a pattern of version-%%2$s/%%1$s, which
would result in the path version-5/images/logo.png.

URL rewrite rules could then be used to disregard the version prefix before
serving the asset. Alternatively, you could copy assets to the appropriate
version path as part of your deployment process and forgo any URL rewriting.
The latter option is useful if you would like older asset versions to remain
accessible at their original URL.

Full Default Configuration

	YAMLframework:

 # router configuration
 router:
 resource: ~ # Required
 type: ~
 http_port: 80
 https_port: 443

 # set to true to throw an exception when a parameter does not match the requirements
 # set to false to disable exceptions when a parameter does not match the requirements (and return null instead)
 # set to null to disable parameter checks against requirements
 # 'true' is the preferred configuration in development mode, while 'false' or 'null' might be preferred in production
 strict_requirements: true

 # session configuration
 session:
 storage_id: session.storage.native
 handler_id: session.handler.native_file
 name: ~
 cookie_lifetime: ~
 cookie_path: ~
 cookie_domain: ~
 cookie_secure: ~
 cookie_httponly: ~
 gc_divisor: ~
 gc_probability: ~
 gc_maxlifetime: ~
 save_path: %app.cache_dir%/sessions

 # templating configuration
 templating:
 assets_version: ~
 assets_version_format: %%s?%%s
 assets_base_urls:
 http: []
 ssl: []
 cache: ~
 engines: # Required

 # Example:
 - twig
 loaders: []
 packages:

 # Prototype
 name:
 version: ~
 version_format: %%s?%%s
 base_urls:
 http: []
 ssl: []

 # translator configuration
 translator:
 enabled: false
 fallback: en

 Copyright 2011-2015, PPI Framework Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	PPI Framework 2 1 documentation

 	Configuration Reference

Monolog Configuration Reference

Monolog [https://github.com/Seldaek/monolog] is a logging library for PHP 5.3 used by PPI. It is inspired by the Python LogBook library.

	YAMLmonolog:
 handlers:

 # Examples:
 syslog:
 type: stream
 path: /var/log/symfony.log
 level: ERROR
 bubble: false
 formatter: my_formatter
 processors:
 - some_callable
 main:
 type: fingers_crossed
 action_level: WARNING
 buffer_size: 30
 handler: custom
 custom:
 type: service
 id: my_handler

 # Default options and values for some "my_custom_handler"
 my_custom_handler:
 type: ~ # Required
 id: ~
 priority: 0
 level: DEBUG
 bubble: true
 path: "%app.logs_dir%/%app.environment%.log"
 ident: false
 facility: user
 max_files: 0
 action_level: WARNING
 activation_strategy: ~
 stop_buffering: true
 buffer_size: 0
 handler: ~
 members: []
 channels:
 type: ~
 elements: ~
 from_email: ~
 to_email: ~
 subject: ~
 email_prototype:
 id: ~ # Required (when the email_prototype is used)
 factory-method: ~
 channels:
 type: ~
 elements: []
 formatter: ~

 Copyright 2011-2015, PPI Framework Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	PPI Framework 2 1 documentation

Index

 C
 | D
 | M
 | R
 | S
 | T

C

 	

 	
 Configuration reference

 	

 	Framework

 	Monolog

 	

 	Controllers

D

 	

 	DataSource

M

 	

 	Modules

 	

 	
 Monolog

 	

 	Configuration reference

R

 	

 	Routing

S

 	

 	Services

 	

 	Skeleton Application

T

 	

 	Templating

 Copyright 2011-2015, PPI Framework Team.
 Created using Sphinx 1.3.1.

 _static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/comment.png

_static/Ppi-framework-logo.png

_static/down.png

_static/down-pressed.png

_static/up.png

_static/minus.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		PPI Framework 2 1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011-2015, PPI Framework Team.
 Created using Sphinx 1.3.1.

_static/comment-close.png

book/commands.html

 Navigation

 		
 index

 		PPI Framework 2 1 documentation »

 single: Services

Commands

The PPI commands layer is powered by Symfony2 directly with no change in behaviour. You can also just drop in any Symfony2 command and it will be executable for you.

In PPI console there’s a very thin layer we’ve added on top top of it to allow your commands to talk to the rest of your app and its services in the context of PPI, so be conscious of this when considering the portability of your console commands between technologies that support symfony2 commands.

Making commands for your modules

Commands get auto-magically registered up by the PPI boot() process, by placing your files in a Command directory at the root of where your module’s namespace is registered, thus so there’s no need to open up your app/console file and add them in there manually.
If you place a Command class into a /Command directory of your module then it will be registered. All command classes need the `Command.php` suffix.

Make your command class

mkdir modules/MyModule/src/Command
touch modules/MyModule/src/Command/ImportUsersCommand.php

<?php
namespace MyModule\Command;

use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Output\OutputInterface;
use PPI\Framework\Console\Command\AbstractCommand;

class ImportUsersCommand extends AbstractCommand
{
 protected function configure()
 {
 $this
 ->setName('import:users:csv')
 ->setDescription('Imports Users From a CSV file');
 }

 protected function execute(InputInterface $input, OutputInterface $output)
 {
 // Import Users Code Here
 }
}

Verifying your commands have been registered

In order to verify that your command is successfully being registered, then run app/console and you should see your command appear just like below.

$ app/console

Available commands:
 help Displays help for a command
 list Lists commands
 import
 import:users:csv Imports Users From a CSV file

Accessing application parameters

<?php
protected function execute(InputInterface $input, OutputInterface $output)
{
 $cacheDir = $this->getServiceManager()->getParameter('app.cache_dir');
}

Accessing services

<?php
protected function execute(InputInterface $input, OutputInterface $output)
{
 $userImportService = $this->getServiceManager()->getService('user.import.service');
 $userImportService->doImport();
}

Accessing the application

The app is just a service named app and you can access it like you would at any other part of the system

<?php
protected function execute(InputInterface $input, OutputInterface $output)
{
 $app = $this->getServiceManager()->get('app');
 $env = $app->getEnvironment();
}

Accessing Configuration

Configuration is actually just a service named config so you access it like you would from any other part of the system.

<?php
protected function execute(InputInterface $input, OutputInterface $output)
{
 $config = $this->getServiceManager()->get('config')
 $userConfig = $config['user'];
}

 © Copyright 2011-2015, PPI Framework Team.
 Created using Sphinx 1.3.1.

